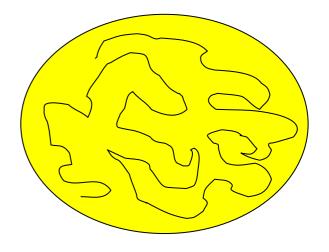


Department of Applied Physics, Advanced School of Science and Engineering, Waseda University

What is ergodicity of the non-equilibrium state?

- 1. Introduction (Ergodic problems and Intermittent phenomena)
- 2. Universal Distributions (Mittag Leffler, Generalized Arcsine, Stable)
- 3. Concluding Remarks



第3回 九州大学 産業技術数理研究センターワークショップ(兼 第3回連成シニュレーション フォーラム) 「自然現象における階層構造と数理的アプローチ」 2008年3月6日

Ergodic Theory

Birkhoff's ergodic theorem. (1931) Let T be measure preserving transformation of the probability space (X, \mathcal{B}, m) , then

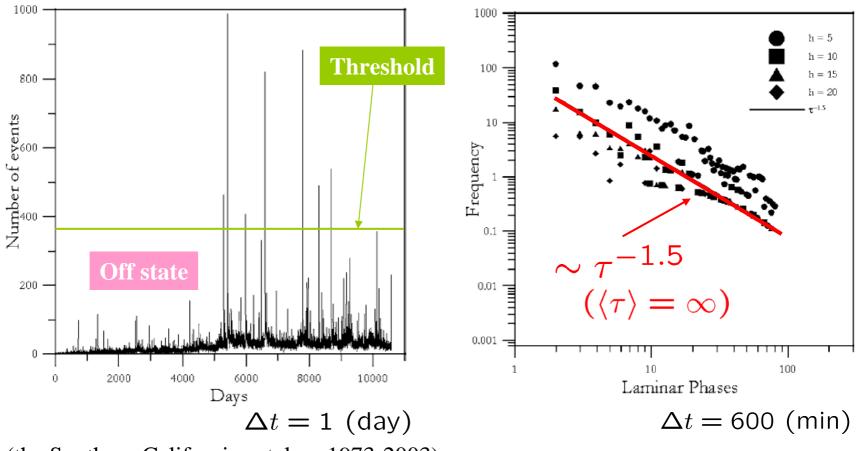
$$\frac{1}{n}\sum_{k=0}^{n-1} f \circ T^k \to \int_X f dm \quad \text{a.e. } \forall f \in L^1(m).$$

Question

$$\frac{1}{n}\sum_{k=0}^{n-1} f \circ T^k \to ? \quad \text{a.e. } \forall f \notin L^1(m).$$

Intermittent Phenomena

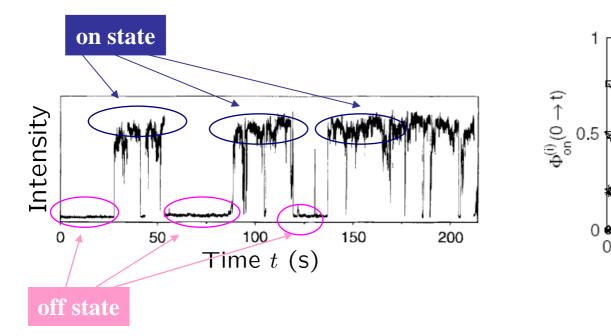
M. Bottiglieri and C. Godano, **On-off intermittency in earthquake occurrence**, *Phys.Rev.* E **75**, 026101 (2007).



(the Southern California catalog, 1973-2003)

Nonergodicity

X.Brokmann et al., Statistical aging and nonergodicity in the fluorescence of single nanocrystals, *Phys. Rev. Lett.* **90**, 120601 (2003).



<u>Characteristics</u> Power law, 1/f spectrum, Non-stationarity, Non-ergodicity The ratio of the on state time $\Phi_{on}(t)$ does not converge.

Time t [s]

200

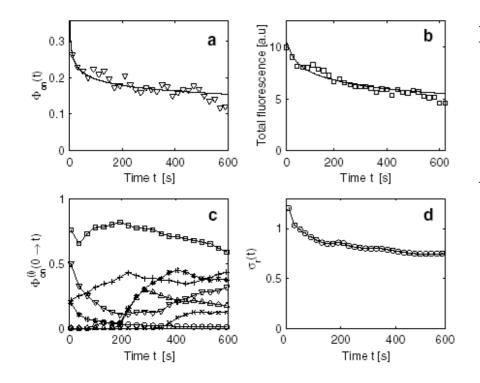
[™]₽₽₽₽₽

400

600

Nonergodicity and Non-stationarity

Nonstationary and non-ergodic behavior



the fraction of QDs in the on state

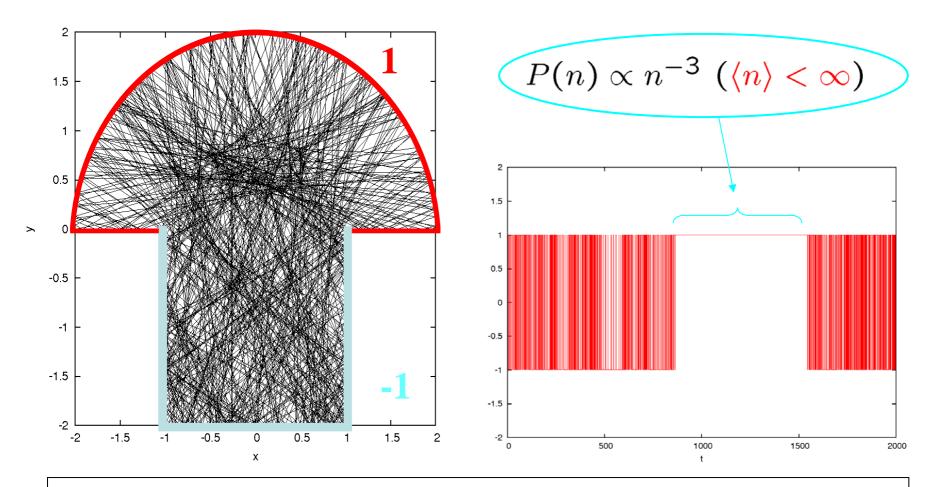
$$\Phi_{\text{on}}(t) = \frac{1}{215} \sum_{k=1}^{215} \mathbb{1}_{[I_0,\infty)}(I_k(t)) \sim t^{-\beta_1}$$

the fraction of time in the on state (for the 7th QD)

$$\Phi_{\rm on}^{(i)}(t) = \frac{T_{\rm on}^{(i)}(t)}{t}$$

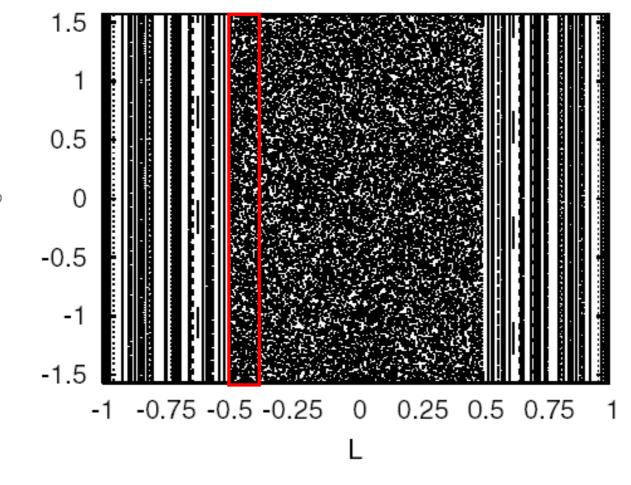
Time average does not converge to constant value.

Mushroom Billiard



T. Miyaguchi, **Escape time statistics for mushroom billiard**, *Phy. Rev.* **E 75** 066215 (2007). (Aizawa lab. Waseda univ. Satoru Tsugawa)

Remark

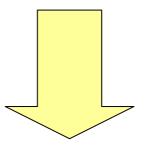


Survival probability $\Rightarrow P(n) \propto n^{-2} (\langle n \rangle = \infty)$

θ

Purpose

Analyzing the distribution of the time average of some observation functions in infinite measure systems which are related to intermittent phenomena.



To make clear the non-stationary phenomena and

the foundation of the ergodicity in the non-equilibrium state

Conditions

Let c denote the inner endpoint of the monotonicity intervals, and let $I_0 = (0, c), I_1 = (c, 1)$. Then T is assumed to satisfy the following conditions:

- (i) $T_{|I_j|}$ has a C^1 -extension $\overline{T}_{|I_j|}$ to \overline{I}_j , $(\overline{T}_{|I_j|})' > 0$, and $\overline{T(I_j)} = [0, 1]$ (j = 1, 2).
- (ii) T is convex in a neighbourhood of 0.
- (iii) T admits an invariant measure μ equivalent of λ , such that the density $dmu/d\lambda$ has a version of the form

$$h(x) = \tilde{h}(x)/x^p$$
, $x \in (0, 1]$, where $p \ge 1$,

and \tilde{h} is positive, continuous and of bounded variation on [0,1].

(iv) The function
$$\psi = \frac{h \circ T \cdot T'}{h}$$
 is increasing on I_0 .

Infinite measure systems

 \clubsuit Lasota-Yorke map T is defined on [0, 1] as

$$Tx = \begin{cases} \frac{x}{x-1} & x \in [0, 1/2) \\ 2x - 1 & x \in [1/2, 1], \end{cases}$$

which has invariant density $\rho(x) = 1/x$, and $Tx - x \sim x^2$ $(x \to 0)$.

 \clubsuit <u>Boole transformation</u> $T : \mathbb{R} \to \mathbb{R}$ is defined as

$$Tx = x - 1/x$$

which has uniform invariant density.

🔶 Log-Weibull map

$$Tx = \begin{cases} x + x^2 e^{-1/x} & x \in [0, a] \\ (x - a)/(1 - a) & x \in (a, 1]. \end{cases}$$

The invariant density has an essential singularity at 0.

 $\rho(x) = g(x)e^{1/x}/x$, g continuous and positive on [0, 1].

The residence time distribution obeys the Log-Weibull distribution.

Invariant density can not be normalized.

Conservative and Dissipative

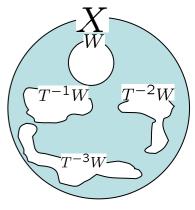
Def. Wandering set

A set $W \subset X$ is called a *wandering set* if the sets $\{T^{-n}W\}_{n=0}^{\infty}$ are disjoint.

 $\mathcal{D}(T)$ (dissipative part): a coutable union of wandering sets $\mathcal{C}(T)$ (conservative part): $\mathcal{C}(T) = X \setminus \mathcal{D}(T)$

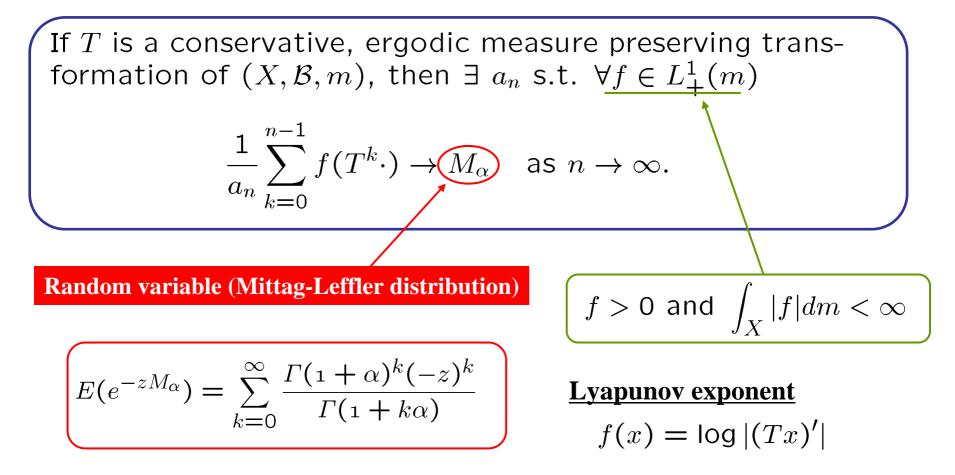
The transformation T is called <u>conservative</u> if $C(T) = X \mod \mu$, and *dissipative* if $D(T) = X \mod \mu$.

 $\frac{Remark}{\mu(X)} < \infty \Rightarrow \text{consevative}$

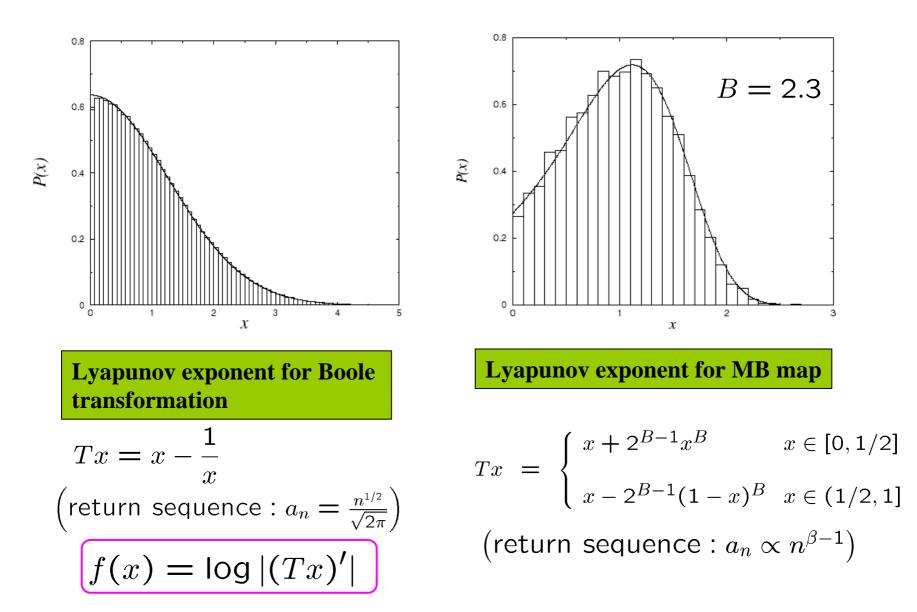


DKA Limit Theorem

Darling – Kac – Aaronson Limit Theorem (1981)



Mittag-Leffler Distribution



Skew Modified Bernoulli Map

The skew modified Bernoulli map is closely related to the intermittent phenomena. (Rayleigh-Benard convection, Lorentz model)

Skew Modified Bernoulli map

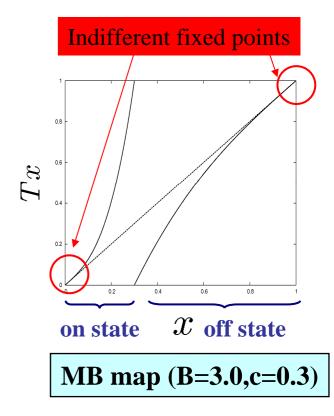
$$Tx = \begin{cases} x + (1-c) \left(\frac{x}{c}\right)^B & x \in [0,c] \\ x - c \left(\frac{1-x}{1-c}\right)^B & x \in (c,1] \end{cases}$$

Invariant measure (Infinite measure)

$$\rho(x) \propto x^{1-B} + (1-x)^{1-B}$$

B < 2: finite measure

 $B \ge 2$: infinite measure



Lamperti-Thaler Generalized Arcsine Law

Let T be the skew modified Bernoulli map, then

$$\lim_{n \to \infty} \Pr\left(\frac{1}{n} \sum_{k=0}^{n-1} \mathbb{1}_{[0,c]} \circ T^k \le x\right) = G_{\alpha_1,\alpha_2}(x),$$

where $\alpha_1 = \beta - 1$,

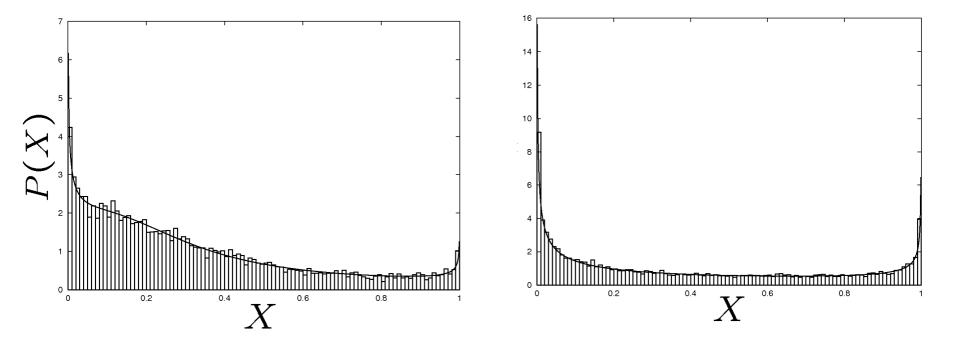
$$\alpha_2 = \frac{1 + (B - 1)c}{1 + (B - 1)(1 - c)} \left(\frac{1 - c}{c}\right)^{\frac{2}{B - 1}}$$

and the p.d.f. $G_{\alpha_1,\alpha_2}'(x)$ is given by

$$G'_{\alpha_1,\alpha_2}(x) = \frac{\alpha_2 \sin \pi \alpha_1}{\pi} \frac{x^{\alpha_1 - 1} (1 - x)^{\alpha_1 - 1}}{\alpha_2^2 x^{2\alpha_1} + 2\alpha_2 x^{\alpha_1} (1 - x)^{\alpha_1} \cos \pi \alpha_1 + (1 - x)^{2\alpha_1}}$$

M. Thaler, A limit theorem for sojourns near indifferent fixed points of one-dimensional maps, *Ergod. Th. & Dynam. Sys.* 22 1289-1312 (2002).

Generalized Arcsine Law



Probability density function of $X = \frac{1}{n} \sum_{k=0}^{n-1} \mathbf{1}_{[0,c]} \circ T^k$

Remark on the invariant density and mean

0.6

400 300

200

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

08

$$P_{+}(n_{+}) \propto \left(\frac{n_{+}}{c_{+}}\right)^{-\frac{B}{B-1}} \text{ (On state)}$$

$$P_{-}(n_{-}) \propto \left(\frac{n_{-}}{c_{-}}\right)^{-\frac{B}{B-1}} \text{ (Off state)}$$

$$\frac{c_{+}}{c_{-}} \propto \frac{\langle n_{+} \rangle}{\langle n_{-} \rangle} = q(c) = \frac{1-\alpha_{2}}{\alpha_{2}}$$

$$q(c) \neq 1 \ (c \neq 1/2) \text{ and } q'(c) > 0$$

The invariant density is not symmetric.

Universal Distributions

Time Average of the observation function

$$\frac{1}{a_n} \sum_{k=0}^{n-1} f \circ T^k = \frac{f + f \circ T + \dots + f \circ T^{n-1}}{a_n} \to \mathbf{X} \text{ as } n \to \infty$$

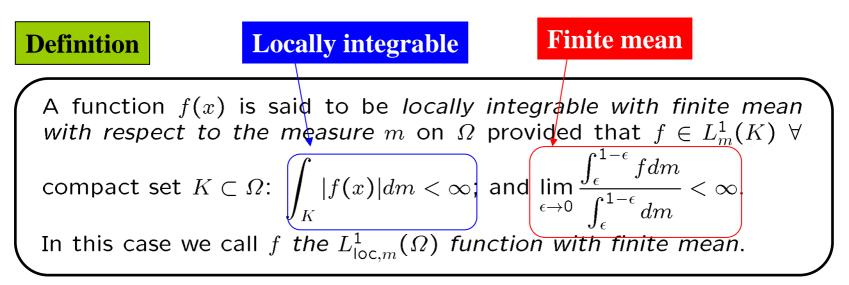
where $a_n = n^{\gamma}$.

Distributional Limit Theorems for the Time Average

f(x)	invariant measure	γ	distribution of X
L_m^1	finite	1	delta (Birkhoff, 1931)
L_m^1	infinite	$\frac{1}{B-1}$	<i>Mittag-Leffler</i> (Aaronson, 1981)
non- L_m^1	finite	$\frac{\alpha^2}{2-B}$	Stable (Akimoto [1])
$L^1_{loc}(m,(0,1))$ non- L^1_m	infinite	1	Generalized Arcsine (Akimoto [1])
non- L_m^1	infinite	$\frac{\alpha}{B-1}+1$	Stable (Akimoto [1])

[1] T. Akimoto, Generalized Arcsine Law and Stable Law in an Infinite Measure System, arXiv:0801.1382v.

$L^1_{\mathsf{loc},m}(\Omega)$ with finite mean



Examples in the MB map

$$f(x) = \begin{cases} 1 & x \in [0, 1/2) \\ -1 & x \in [1/2, 1) \end{cases}$$

$\blacklozenge f(x) = x$

are the $L^1_{loc,m}(0,1)$ function with finite mean. (non- L^1_{μ} functions).

Generalized Arcsine Law

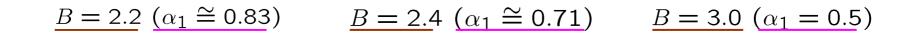
Let T be the skew MB map and f be the $L^1_{loc,m}(0,1)$ function with finite mean and f(0) = a, f(1) = b. Further, there exists δ such that $0 < \delta < 1$ and f(x) is continuous in $[0, \delta] \cup [1 - \delta, 1]$. Then the time average converges in distribution to $Y_{\alpha_1,\alpha_2,a,b}$:

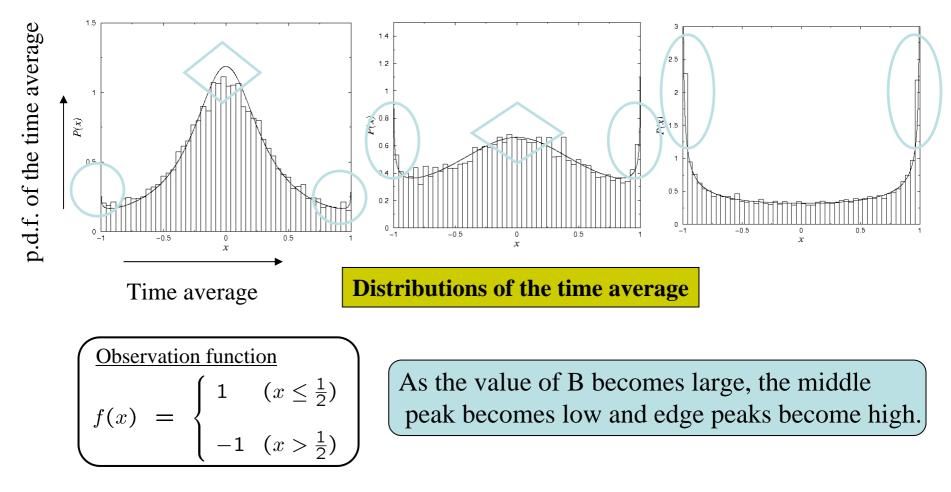
$$rac{1}{n}\sum_{k=0}^{n-1}f(T^k\cdot)
ightarrow Y_{lpha_1,lpha_2,a,b} ext{ as } n
ightarrow\infty$$

where $\gamma = 1/(B-1)$ and the p.d.f. of $Y_{\alpha_1,\alpha_2,a,b}$ for a > b is given by

Generalized Arcsine distribution

Numerical Simulations (c = 1/2)

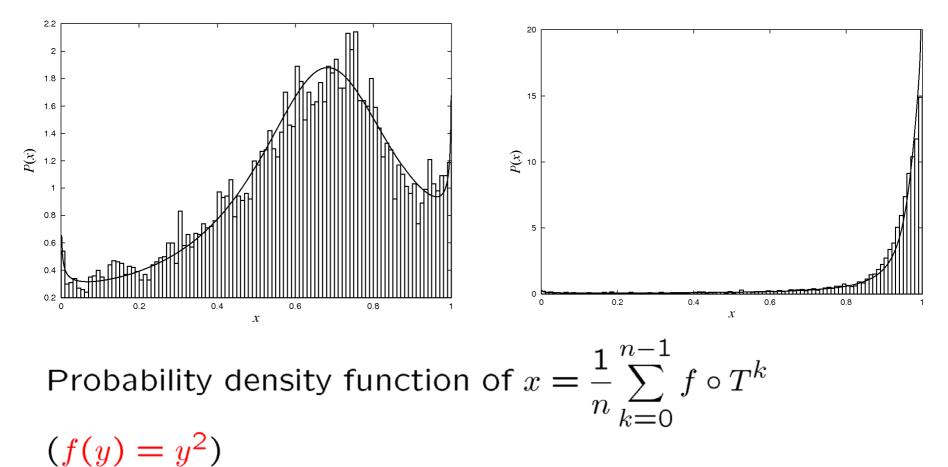




Numerical Simulations

B = 2.3 and c = 0.4

B = 2.5 and c = 0.1



Application to Correlation Function

For all
$$n \ge 0$$

$$C(n) = \frac{1}{N} \sum_{k=0}^{N-1} f(x_k) g(x_{k+n}) \to Y_{\alpha_1, \alpha_2, a, b} \quad N \to \infty$$
where $f \cdot g \circ T^n \in L^1_{\text{loc}, m}(0, 1)$ with finite mean and $f(0)g(0) = a, f(1)g(1) = b.$

Correlation function is intrinsically random (Generalized Arcsine distribution) and never decays.

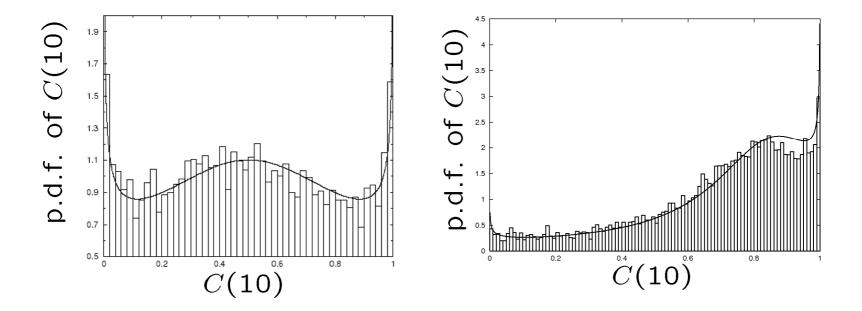
Remark. The convergence becomes slow as n becomes large.

$$\left(C(n) = \frac{1}{N} \sum_{k=0}^{N-1} x_k x_{k+n}\right)$$

Correlation Function

$$B = 2.5$$
 and $C = 0.5$

B = 2.4 and C = 0.4



Probability density function of $C(10) = \frac{1}{n} \sum_{k=0}^{n-1} x_k x_{k+10}$

Remark on Wiener-Khintchine Theorem

Wiener-Khintchine Theorem

$$S(k,N) \cong \sum_{n=1}^{N} C(n) \cos(2\pi kn/N)$$

where C(n) is the correlation function. In the case of the power law decay, namely, $C(n) \sim n^{-\alpha}$, there is a possibility that S(k,N)diverges. Actually, S(k,N) diverges when the exponent α is smaller than 1.

$$S(k,N) \cong \sum_{n=1}^{N} n^{-\alpha} \cos(2\pi kn/N) = N^{1-\alpha} \frac{1}{N} \sum_{n=1}^{N} \left(\frac{n}{N}\right)^{-\alpha} \cos\left(2\pi k\frac{n}{N}\right)$$
$$\sim c(k) N^{1-\alpha} \cong k^{\alpha-1} N^{1-\alpha} \text{ as } N \to \infty$$
where $c(k) = \int_{0}^{1} x^{-\alpha} \cos(2\pi kx) dx = k^{\alpha-1} \frac{1}{(2\pi)^{-\alpha}} \int_{0}^{1} x^{-\alpha} \cos x dx < \infty.$

Power Spectrum

$$S_k = |\hat{x}_k|^2 = \frac{1}{N^2} \sum_{j=1}^N \sum_{l=1}^N x_j x_l \cos\left(\frac{2\pi k}{N}(j-l)\right)$$

C(n) :random $\Rightarrow S_k$: random

Question

- 1. The distribution of S_k 2. Scaling of S_k ($S_k \sim N^{-\nu}$)

Distribution of S_0

$$S_{0} = \frac{1}{N^{2}} \sum_{j=1}^{N} \sum_{l=1}^{N} x_{j} x_{l} = \left(\frac{1}{N} \sum_{j=1}^{N} x_{j}\right) \left(\frac{1}{N} \sum_{l=1}^{N} x_{l}\right)$$
$$\rightarrow (Y_{\alpha_{1},\alpha_{2},0,1})^{2}$$
Generalized arcsine distribution

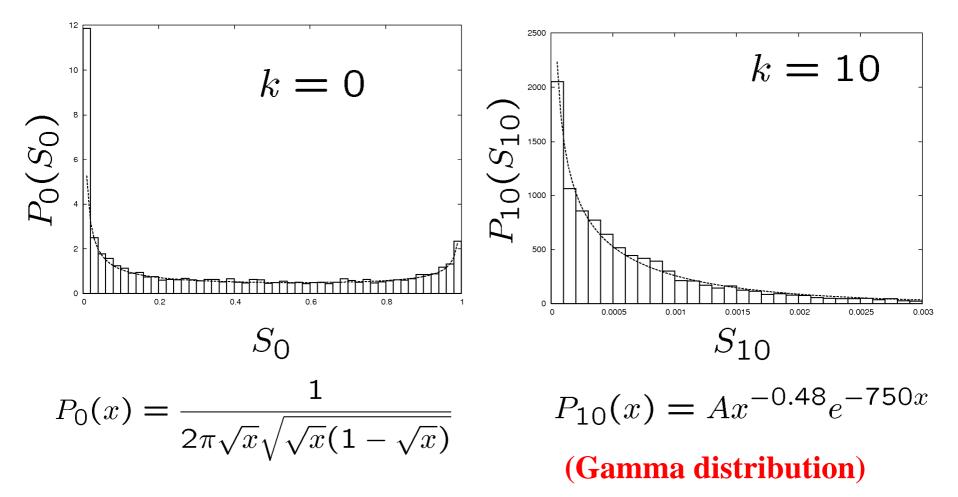
The probability density function of $x = S_0$ is given by

$$P_0(x) = \frac{1}{2\sqrt{x}} G'_{\alpha_1,\alpha_2}(\sqrt{x})$$

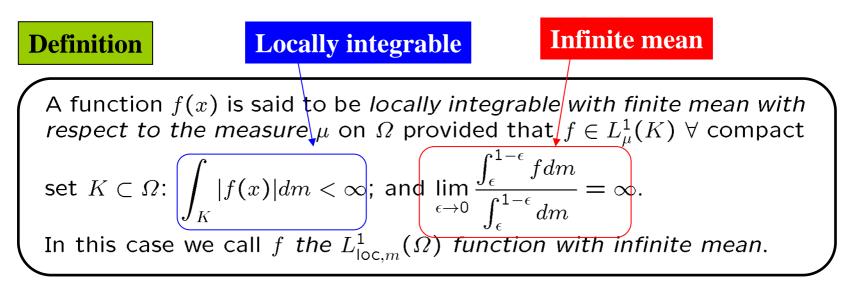
$$\left(\mathsf{Pr}(S_0 < x) = \mathsf{Pr}(Y_{\alpha_1, \alpha_2, 0, 1} < \sqrt{x})\right)$$

Numerical Simulations

B = 3.0 and c = 0.5



$L^1_{\mathsf{loc},m}(\Omega)$ with infinite mean



$$\frac{1}{a_n}\sum_{k=0}^{n-1} f \circ T^k \to ? \quad \text{a.e. } \forall f \in L^1_{loc,m}(0,1) \text{ with infinite mean.}$$

Stable Distributions

Theorem 1. For fixed $0 < \alpha < 1$ the function $\gamma_{\alpha}(\lambda) = e^{-\lambda^{\alpha}}$ is the Laplace transform of a distribution G_{α} with the following properties:

 G_{α} is stable; more precisely, if $\mathbf{X}_{1}, \dots, \mathbf{X}_{n}$ are independent variables with the distribution G_{α} , then $(\mathbf{X}_{1} + \dots + \mathbf{X}_{n})/n^{1/\alpha}$ has again the distribution G_{α} .

$$egin{aligned} &x^lpha [{f 1}-G_lpha(x)] o rac{1}{\Gamma(1-lpha)} \quad x o\infty, \ &e^{x^{-lpha}}G_lpha(x) o {f 0} \quad x o {f 0}. \end{aligned}$$

Power law phenomena

Earthquake, fluorescence intermittency of nanocrystals, motion of bacteria, chaotic dynamics, finance

Theorem and Conjecture

Finite measure case (B < 2)

$$\frac{2}{\Gamma(1-\alpha)n^{1/\alpha}}\sum_{k=0}^{n-1}f\circ T^k\to G_\alpha \quad n\to\infty,$$

where $f(x) = x^{-\beta}$ ($\beta \ge 2 - B$) and $\alpha = \beta/(2 - B)$.

Infinite measure case $(B \ge 2)$

$$\frac{1}{b_n} \sum_{k=0}^{n-1} f \circ T^k \to G_{1/\gamma} \quad n \to \infty,$$

where $b_n \propto n^\gamma$ and $\gamma = rac{eta}{B-1} + 1$.

 $x^{\beta}f(x) = O(1), \quad x \to 0, \quad (1-x)^{\alpha}f(x) = O(1) \quad x \to 1.$

Finite Measure Case (*B* < 2**)**

Invariant density

$$\rho(x) = \frac{2-B}{2} \{ x^{1-B} + (1-x)^{1-B} \}. \qquad \{ \mathbf{X}_1, \mathbf{X}_2, \cdots, \mathbf{X}_n \}$$

Birkhoff's ergodic theorem tells us that the probability density function of the sequence $\{Tx, T^2x, \dots, T^nx\}$ obeys the invariant density as $n \to \infty$. The distribution of $\mathbf{Y} = f(\mathbf{X})$ is given by

$$\Pr(\mathbf{Y} < x) = \Pr(\mathbf{X} > x^{-1/\alpha}) = 1 - \frac{1}{2}x^{-\frac{2-B}{\alpha}}(1 - x^{-\frac{B-1}{\alpha}}).$$

Therefore

$$1 - \Pr(\mathbf{Y} < x) \sim \frac{1}{2} x^{-\frac{2-B}{\alpha}} \quad x \to \infty.$$

Infinite Measure Case ($B \ge 2$)

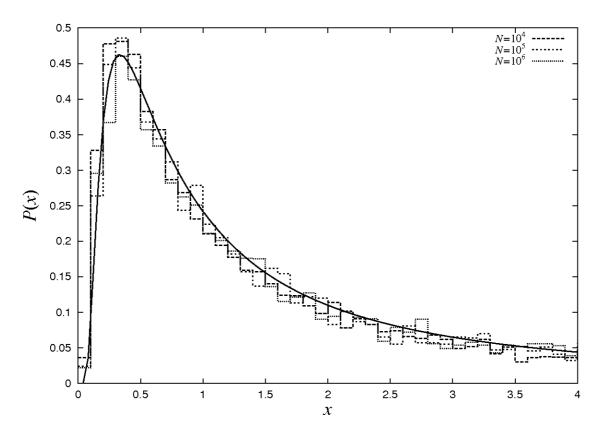


Fig. 1. The probability density function for the scaled time average of f(x) ($B = 3.0, \beta = 2.0$). The fitting curve is a stable distribution with $\gamma = 2.0$.

Convergence to the invariant density

THEOREM Let $T : [0, 1] \rightarrow [0, 1]$ satisfy the conditions (i)-(iv) with return index α . Then, for all Riemann-integrable functions u on [0, 1],

$$w_n(T)P^n u \to \left(\frac{1}{\Gamma(\alpha)\Gamma(2-\alpha)}\int_0^1 u d\lambda\right)h$$

uniformly on compact subsets of (0, 1].

$$w_n \sim \left\{ \begin{array}{ll} \log n, & \alpha = 1\\ n^{1-\alpha}, & \alpha < 1 \end{array} \right\}$$

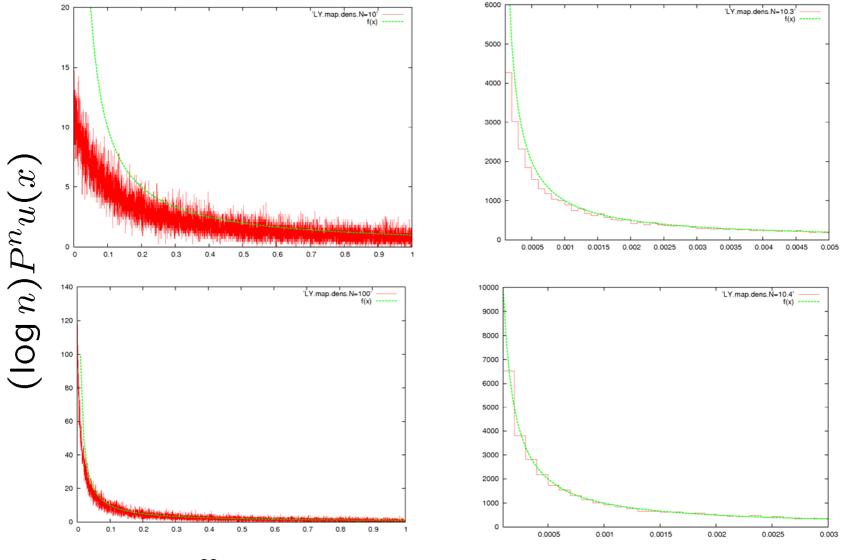
Lasota-Yorke map

$$T(x) = \begin{cases} x/(1-x), & x \in [0, 1/2), \\ 2x - 1, & x \in [1/2, 1], \end{cases}$$

which has invariant density h(x) = 1/x.

$$(\log n)P^n u \to \left(\int_0^1 u d\lambda\right)h \quad n \to \infty$$

Numerical Simulations



 ${\mathcal X}$

 ${\mathcal X}$

The Scaling Exponent

Assumption
$$P^n u \to \frac{1}{2}\delta(x) + \frac{1}{2}\delta(1-x)$$

Let P be the Perron-Frobenius operator. (Evolution of the density) For $u \in L^1(0,1)$ and $\int_0^1 u(x)dx = 1$

$$P^{n}u = \begin{cases} 1/2\epsilon_{n} & (x < \epsilon_{n}) \\ 0 & (\epsilon \le x \le 1 - \epsilon_{n}) \text{ and } \epsilon \propto n^{-\frac{1}{B-1}}. \\ 1/2\epsilon_{n} & (1 - \epsilon_{n} < x) \end{cases}$$

We have
$$\langle f \circ T^n \rangle = \int_0^1 f(x) P^n u(x) dx = O(\epsilon_n^{-\beta}) = O(n^{\frac{\beta}{B-1}}).$$

Therefore $\sum_{k=0}^{n-1} \langle f \circ T^n \rangle \propto n^{\frac{\beta}{B-1}+1}$

Concluding Remarks

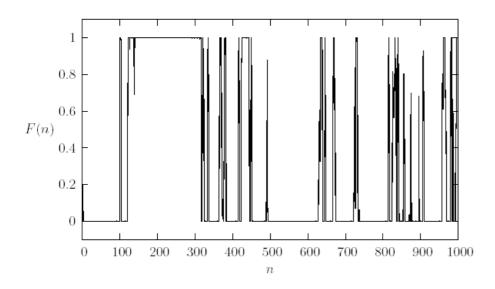
In infinite measure dynamical systems the time average of some observation functions converges in distribution (Generalized Arcsine Law, Stable Law).

f(x)	invariant measure	γ	distribution of X
L_m^1	finite	1	delta (Birkhoff, 1931)
L_m^1	infinite	$\frac{1}{B-1}$	Mittag-Leffler (Aaronson, 1981)
non- L_m^1	finite	$\frac{\alpha}{2-B}$	Stable (Akimoto [1])
$L^1_{loc}(m,(0,1))$ non- L^1_m	infinite	1	Generalized Arcsine (Akimoto [1])
non- L_m^1	infinite	$\frac{\alpha}{B-1}+1$	Stable (Akimoto [1])

Non-stationary time series (Fluorescence of nanocrystals) Stationary random variables Time average

Concluding Remarks

Ergodicity of non-equilibrium state in dynamical system is related to infinite measure systems.



Macroscopic observable F(n) is random.

$$\left(F(n) = \frac{1}{N} \sum_{k=n-N+1}^{n} f(T^k x)\right)$$